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1. Introduction
The ideas in this paper arose om a project to develop an electronic corpus and 
concordance of ancient Syriac literature. We will use this project to illustrate many 
of the ideas in this paper. The Syriac project at Brigham Young University involves 
many individuals om several departments including Linguistics, Computer Sci-
ence, and the Center for the Preservation of Ancient Religious Texts. The project 
team also includes scholars om Oxford and Princeton Universities. Syriac texts 
have been transcribed manually by teams of Maronite, West Syrian and East Syrian 
Christians and Monks located in Lebanon, Rome, Iraq, Chicago and Oxford. The 
proximate goal of this project is to produce a corpus tagged with part of speech data 
for the writings of the fourth century Syriac poet-theologian Ephrem the Syrian (d. 
373). This initial corpus is approximately half a million words in size. A further four 
million words have been added to the corpus in dra format. These texts originate 
om the third to the thirteenth century. However the majority of the texts are 
om the fourth to the seventh centuries, the so called Classical period of Syriac 
literature. It is the long-term aim of the project to build a comprehensive corpus of 
Syriac literature, working diachronically through the available texts. Much of Syriac 
literature has already been published, and these published texts are used in the cor-
pus. However, a great deal of Syriac literature is available only in manuscripts. It is 
impossible to precisely estimate the size of the corpus; however, it is not improbable 
that the corpus extends to over 30,000,000 words. 
We do not have the resources to fully annotate a corpus of this size with morpho-
logical tags. We are taking a pragmatic approach to annotating texts for the corpus. 
The first stage is to prepare a dra transcription with machine annotation. Texts 
will then be prooead and annotated by hand as scholarly interest is raised to a suffi-
ciently high level to complete the work. Many texts in the corpus may never be fully 
prooead or annotated. Some text collections, beginning with Ephrem, will, how-
ever, be thoroughly proofed and tagged, sufficient to produce a full print concord-
ance. A higher level of accuracy will be required for the print portion of the corpus 
than for the remainder of the corpus which will be published on the internet.
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The production of electronic corpora for ancient languages involves several “anno-
tation” tasks. Transcription, morphological and part of speech tagging, grammati-
cal parsing, and semantic tagging can all be seen as annotation tasks. For example, 
in transcription the user takes an image and labels (or annotates) the image with 
transcribed text. In part-of-speech tagging the user takes a transcribed text and 
annotates the text with parts of speech etc. Thus annotation is central to each step 
in the creation of a useful electronic corpus. The goal of our part of the Syriac lit-
erature project is to reduce human annotation cost as much as possible through the 
appropriate use of machine learning and active learning techniques. We also seek to 
achieve lower error rates than could be achieved through human annotation alone 
and to appropriately balance the value of annotator time on the print corpus with 
the value of annotator time on the internet corpus.

1.1 Issues in Corpus Creation: 
Human annotation can be very expensive, and this expense is oen the limiting fac-
tor in the creation of electronic corpora. Since ancient languages are generally less 
well know, their annotation requires more specialized language knowledge, which 
can make human annotation even more expensive. 
One solution to this problem is to use machine learning to automatically annotate 
the data. Machine learning approaches are available for transcription (OCR or Opti-
cal Character Recognition), part of speech tagging, parsing and semantic role labe-
ling. Unfortunately, machine learning approaches to annotation oen have higher 
error rates than human annotation and they oen require a large set of previously 
labeled data in order to “train” the machine learning model. Typically the larger the 
initial training set the better the algorithm will perform. Oen, when dealing with 
ancient languages this initial training set is either nonexistent or extremely small. 
These problems with machine learning can be overcome by combining machine 
learning with human annotation. The goal of such a combination is to use the 
expensive but more accurate human annotation in the most beneficial way to lower 
the error rate of the entire annotated corpus as inexpensively as possible. Typically 
the computer selects the examples to be annotated by the human that it believes 
will be the most beneficial. This process is called “active learning.” Active learning 
is invaluable when there are insufficient resources to use a human annotator over the 
entire corpus. Even when there are sufficient resources to annotate the entire corpus 
by hand, many errors likely remain. Active learning can focus human attention on 
the most problematic sections and can result in higher accuracy than human an-
notation alone.
Several complex and poorly understood interactions arise when attempting to inte-
grate human annotation with machine learning and active learning in the creation 
of a large annotated corpus. These interactions arise among the following compo-
nents of the system:
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⒈ The expense of human annotation 
⒉ The machine learner
⒊ The active learning technique
⒋ How annotators are paid
⒌ The user interface 
⒍ Human annotation error rates
⒎ Variability in error significance for print vs. internet portions of the corpus

In order to effectively integrate all these elements it is important to understand 
which elements affect other elements of the system. For example, how we pay our 
annotators affects the cost of annotating a sentence and can affect the sentence 
selection of the active learner. User interface design can also affect the cost of an-
notating a sentence as well as the accuracy of the annotations gained. Since human 
annotations are not 100% accurate, their accuracy must be modeled in order to 
determine what we believe and how sure we are about what we believe given a set 
of human annotations. Human annotations compose the machine learner’s training 
set, therefore the model of human annotation accuracy should affect the behavior 
of the machine learner.
Understanding these interactions is important in order to answer several important 
questions. How oen should we employ a second annotator and where would that 
annotator’s work be most effective? Is it better for the second annotator to annotate 
a completely unseen example, or to veri the work of an annotator whose answer 
disagrees with the machine learner’s annotations? Should we attempt to learn the 
abilities of each annotator separately? Should we give the annotators sentences where 
we already know the answer in order to determine their abilities? If so, how many 
should we give them? How should we effectively deal with the fact that errors in one 
portion of the corpus are more important than errors in another portion? 

1.2 Modeling the Corpus Annotation Process:
In this paper we propose a Bayesian, decision-theoretic, model of the corpus crea-
tion process. The model helps to answer the above questions and clarifies the above 
interactions. Given the model of the process we can construct the theoretically op-
timal techniques for answering many of the above questions. The optimal solution 
to these questions can be computationally infeasible; however, the model provides a 
clear way of thinking about the problem. With the optimal solution in mind better 
heuristics can be developed which approximate the optimal solution. This approach 
(developing an optimal model and then approximating it to achieve a computation-
ally tractable solution) has guided several advances in the annotation process in the 
Syriac language project as well as in many other machine learning projects.
In section 2, we present a Bayesian, decision-theoretic, model of the machine learn-
ing process itself and describe how that model can be extended to deal with the 
sequential data of natural language. In section 3 we show how this model also ac-
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commodates active learning. In section 4 we describe how utility in the model can 
be used to deal with situations where errors in one part of the corpus are more im-
portant than errors in another part (as is the case in our Syriac project). In section 5 
we use the model to illuminate how annotation costs affect the active learning tech-
nique. In section 6 we discuss the interaction between the user interface, and the 
annotation cost, and illustrate this with a cost model obtained om a user study. 
In section 7 we extend the model to incorporate human annotation error rates. In 
section 8 we conclude by providing recommendations 
for the corpus creation projects.

2. Modeling the Machine Learning Process:
We believe that the best way to think about the ma-
chine learning (ML) problem is as a graphical model 
(or Bayesian Network) (See Figure 1). (Carroll and 
Seppi, 2007; Carroll, et al., 2007; Buntine 1992). We 
will first discuss the implications of this simple model 
and then explore the additions that must be made to the 
model to represent the more complex sequential prob-
lems oen encountered in NLP.
In machine learning there are features x, classes y (in the case of 
our project the part of speech tags), and an unknown function, 
f, that maps x to y. This network models the standard clas-
sification machine learning problem. The F node represents 
a distribution over possible functions f, and incorporates the 
ideas of a bias. This node can be represented in many differ-
ent ways. For example, the distribution over possible functions 
could be represented by placing a distribution over the weights 
of a neural network (Freitas et al., 1998). If a distribution is 
placed over the parameters of most traditional machine learn-
ing (ML) representations then the result is oen a distribution 
over possible functions and can be used to represent f (Caroll, 
et al., 2007). Bayes’ law optimally dictates how the parameters 
should be updated in the presence of data (a set of labeled fea-
tures and classes). An actual distribution over possible classes y 
can be produced by integrating over the parameters of F.
This formulation clarifies issues dealing with “No 
Free Lunch” (Wolpert, 2001; Carroll and Seppi, 
2007). When this procedure is computationally in-
tense, heuristics can oen be used. Many current 
parameter update techniques can be seen as approxi-

Figure 1: A simple gra-
phical model for the clas-
sification problem in ma-
chine learning

Figure 2: A decision network 
for classification D is a deci-
sion which results in an out-
come with a given utility.
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mations to this network with specific distributional and simpliing assumptions; 
for example, backpropogation can be thought of as a maximum likelihood estima-
tion of the more correct Bayesian approach to updating the weights (Freitas et al., 
1998). Thus we can think of many machine learning techniques as heuristics to the 
more mathematically correct formulation. Thinking of traditional techniques in 
this way can oen help us to better understand their behavior. 
Perhaps the most important reason to think about machine learning in terms of a 
Bayesian network is the connection between Bayesian statistics and Utility Theory. 
The principles of decision/utility theory provide a technique for maximizing ex-
pected utility using probabilities, but these techniques are only guaranteed to be 
optimal when probabilities are determined by the laws of Bayesian Statistics (See 
Figure 2). All machine learning involves decisions. If utility is not included explic-
itly then hidden implicit utility assumptions are being made that may or may not 
correspond to reality. For example, since Artificial Neural Networks approximate 
maximum likelihood solutions for the weights, they therefore correspond to a util-
ity function based on misclassification error on the weights. This is not always cor-
rect. The misclassification error utility assumption will fail whenever one type of 
error is more important than another, or when precision and recall are not exactly 
balanced. For example, in our case we care more about errors in one part of the 
corpus than we do in another.
By thinking about the problem in terms of a Bayesian Decision Network, utility is 
handled explicitly and we can see the theoretically optimal solution to computing 
the probability of a class p⒴ that will maximize the expected utility (Carroll and 
Seppi, 2007). Then, if this optimal solution is too computationally intense to com-
pute, we can at least design heuristics in a more principled way.

2.1 NLP Extensions to the ML Model
In many natural language processing (NLP) problems the network is much more 
complex than in the above examples. Primarily this is because data in NLP is inher-
ently sequential. In machine learning there are many x and y pairs that have been 
observed (the training set) and a set of x and y pairs where the y node is unobserved 
(the test set). In the sequential tagging problem there are sequences of words (sen-
tences) in the training and test sets. This means that the label at one time step is 
actually part of the feature set for the next time step (see Figure 3). Common ap-
proximations for computing the probability of a class/tag in this network include 
techniques such as Maximum Entropy Markov Models (MEMMs). A Maximum 
Entropy (MaxEnt) model is a log-linear model whose parameters are those that cre-
ate the distribution of maximum entropy that still satisfies the constraints imposed 
by the evidence found in the training data (Ratnaparkhi, 1996; Toutanova & Man-
ning, 2000; Toutanova et al., 2003). A gradient descent optimization procedure, 
such as LBFGS, is used to find the parameters during training.
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An MEMM is a Conditional Markov Model (CMM) in which a Maximum En-
tropy (MaxEnt) classifier is employed to estimate the distribution

 p(yi|w,y1‥i-1) ≈ pME(yi|wi,vi,yi-1,yi-2)

over possible labels yi for each element in the sequence—in this case, for each word 
wi in a sentence w. The model also has access to any predefined attributes (repre-
sented here by the collection vi) of the entire word sequence and to the labels of 
previous words y1‥i-1 trained om labeled data. Our implementation employs an 
order-two Markov assumption so the classifier has access only to the two previous 
tags yi-1, yi-2. We refer to the features (wi, fi, ti-1,ti-2) om which the classifier pre-
dicts the distribution over tags as “the local trigram context” (Ringger et al., 2007). 
State-of-the-art Part-of-Speech tagging results have been achieved with MEMMs 
(Ratnaparkhi, 1996; Toutanova & Manning, 2000; Toutanova et al., 2003). Part of 
the success of MEMMs can be attributed to the absence of independence assump-
tions among predictive features and the resulting ease of feature engineering.

3. Active Learning:
The sequential classification network can also be used to model active learning. 
The active learning task involves selecting an unobserved node (known as the test) 
and observing it. In the sequential classification network, this is done by selecting 
an un-annotated sentence which is then “observed” by having a human annotate 
it. The goal is to select a test that will provide the greatest improvement to the 
computer’s estimates over the rest of the unlabeled classes. To select the test that 
will achieve the greatest improvement the sequential classification network is ex-
panded into a decision network by adding decision nodes and utility measures (see 
Figure 4) as was done previously in Figure ⒉ The decision to be made is what part 
of speech tag should be applied to each word. Since the objective of the annotation 
process is to correctly annotate the corpus. We use accuracy as our measure of the 
utility of a choice.

Figure 3: A sequential classification network.
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In this decision theoretic context, active learning is selecting the un-annotated data 
to be annotated which maximizes the expected gain in utility. This value is known 
as EVSI, or the Expected Value of Sample Information (Raiffa and Schlaiffer, 1967). 
EVSIi involves the computation of the expected improvement in utility that would 
result om revealing the value in a particular hidden node (in our case a specific yi) 
in a Bayesian network and is computed as follows:

  EVSIi = Σ P(yc|xi) Σ p(xk) max Σ P(yi|xk, xi yc) U (aj, yl, xk)         
             yc∈Dy           xk∈Dx        

aj∈Da  yl∈Dy

     – Σ P(xk) max Σ p(yl|xk) U (aj, yl, xk)         
                yc∈Dy          

ac∈Dy  yl∈Dy

where D represents the domain of various variables, a is an action, U is the utility, 
yc is the annotation of the test i and yl is the annotation in location k. Intuitively 
we are taking the expectation over every possible result of the test yc and comput-
ing the expected utility of making the decision if we had that information minus 
the expected utility of making the decision without any extra information. The net 
expected value of a node in the network is: ENETi = EVSIi - ECSIi where ECSIi 
(The Expected Cost of Sample Information) is the expected cost of gathering the 
information about node i.
Unfortunately the computation of ENET is computationally difficult and awkward. 
If, for example, the utility for EVSI is computed in terms of expected improvement 

Figure 4: Utility in sequential learning for active learning.
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in classification accuracy, while ECSI is measured in hours spent by the human an-
notator, then the difference ENET= EVSI-ECS only makes sense when both EVSI 
and ECSI are converted into the same scale (units). Since it is awkward to convert 
the number of hours of annotation to an increase in model accuracy, and it is like-
wise awkward to convert accuracy to hours, we could convert to both to some other 
measure. In other decision theory problems it is possible to convert all measures 
to some common measure, like money. In annotation, such a conversion would be 
very much a function of the particular project. 
Note also that the computation of a single step of ENET alone is insufficient in 
annotation. If the active learner could only perform a single test then the optimal 
policy would be to sample the test with the highest ENET value. However, if the 
learner can perform multiple tests it is possible for two tests taken together to have 
a higher net value than any one single test alone. EVSI could be performed over 
every possible combination of tests, but this would make an already intractable 
computation worse (Carvalho and Puterman, 2003).
An intuitive heuristic can be used to solve both the scaling and the combination of 
tests problem. Tests can be selected greedily based upon the quotient EVSI/ECSI. 
This can be thought of as selecting the test with the most “Expected Bang per 
Buck” (EBPB) rather than the test with the highest ENET value. Geometrically 
this can be thought of as selecting line segments with the highest slope rather than 
line segments with the highest endpoint. Several shorter line segments with higher 
slope can eventually lead to a higher endpoint with less cost. 
The relative ordering of EVSIi/ECSIi will be the same as αEVSIi/ECSIi for all 
positive α. If EVSI and ECSI can be placed in the same units by a linear transfor-
mation then the “expected bang per buck” technique does not force us to define 
EVSI and ECSI in the same units. For our Syriac problem, cost/hour is linear and 
it is reasonable to assume that the usefulness of the corpus is a linear function of 
its accuracy. 
Unfortunately computing the EVSI (and thus EBPB) of a node even in this over-
simplified network is far too computationally intense. Things only get worse when 
we begin to add the additional complexity imposed by the sequential nature of NLP 
problems. Therefore we need an approximation to EVSI. 
Several common techniques for performing active learning include Query by Un-
certainty (QBU) and Query by Committee (QBC). QBU is a technique that selects 
the next sample as the node with the maximum uncertainty concerning its value. 
QBC trains multiple learners and selects the node with maximum disagreement 
between the learners. It can be shown that these techniques actually approximate 
EVSI given some simpliing assumptions. Under those assumptions EVSI of a 
node will be proportional to the uncertainty in that node, or to the disagreement 
between learners for that node. The existence of these heuristics can make the ap-
proximation of EVSI tractable inasmuch as the simpliing assumptions are met. 
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Traditionally these techniques are used directly to perform the active learning selec-
tion. For our purposes however, they will be used as a proportional approximation 
to EVSI, which will allow the EBPB calculation. If ECSI is uniform then this will 
be equivalent to the standard active learning techniques. For example, if we are pay-
ing annotators by the word, we could compute EBPB=EVSI/ECSI≈QBU/N where 
N is the number of words in the sentence to be annotated. We call this approxima-
tion of EBPB “NQBU” (or Normalized QBU).

4. Variability in Error Importance:
For our Syriac corpus we have part of the corpus that will be published to print and 
on the internet and part that will be published only on the internet. We will refer 
to these two portions of the corpus as the print and internet portions, respectively. 
Errors in the print portion of the corpus are more significant than errors in the 
internet portion. 
A simple, if typical, solution to this problem is to have two annotators annotate 
the print corpus, with a third annotating whenever they disagree, and then to spend 
any remaining money on the internet portion. However, given our utility model, 
this approach is sub-optimal. Do we really want to spend the cost of a human an-
notator (especially of the second human annotator) on portions of the print corpus 
even though they have an extremely high degree of certainty? The implicit utility 
implication of demanding the second annotator regardless of how certain we are is 
to assume that there is infinite utility in the print corpus with finite or zero utility 
in the internet corpus. Furthermore, do we really want to be spending money on the 
internet corpus when there are portions of the print corpus that have low certainty 
even when the two human annotators agree? This can happen when the computer 
disagrees with both human annotators. In this case would it not be worthwhile to 
use a third annotator in such locations? Thus the typical policy assumes either that 
we are certain of the correct annotation aer two annotators (which we are not) or 
that the utility of errors goes down aer two annotators (which it does not). This 
combination of behavior is therefore irrational for all utility models. 
In order to correctly balance annotation costs on the print and internet portions of 
the corpus it is necessary to be explicit in the cost of an error in the print and inter-
net corpora. A reasonable approximation might be to assume that EVSIi α UNCi 
× Ui where Ui is inversely proportional to the cost of a mistake in that part of the 
corpus where i is found. Of course this is not strictly the case, since sample informa-
tion in one part of the corpus could aid in the other part of the corpus. However, 
this could be a reasonable approximation if we assume that the data provides the 
most information in the section where it is found. Other more accurate (but more 
computationally intense) approximations could be imagined; however, any approxi-
mation will require an explicit measure of utility. Specifically we must be explicit 
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about the importance of errors in each portion of the corpus in order to make 
reasonable decisions about the allocation of annotator effort.

5. Annotation Cost:

Many active learning techniques (including QBU and QBC) ignore ECSI, yet it 
plays an important part in active learning: NETi = EVSIi – ECSIi, and “expected 
bang per buck” EBPB =EVSIi/ECSIi. For either technique ECSI is central to the 
calculation. QBU and QBC both approximate EVSI but completely ignore ECSI. 
In corpus annotation it is oen the case that some samples will cost more than 
other samples depending on the user interface involved. This can make a huge 
difference for active learning. For example, three reasonable ways that annotators 
could be paid are by the word, by the sentence, or by the hour. Different active 
learning techniques perform better depending on which cost metric is applied. 
Figure 5 indicates that when annotators are paid by the sentence a rather simple 
active learning technique (select the longest sentence) performs well, while NQBU 
performs worse than random. On the other hand, if our annotators are paid by the 
word, then longest sentence performs worse than random, while NQBU performs 
well. Not only did the method of payment affect the results, its influence was 
dramatic.

Figure 5: A comparison of three possible active learning techniques, random, 
longest sentence and NQBU (the uncertainty divided by the sentence length). 
Notice that if you are paying your annotators by the word then NQBU is the 
best approach, but if you are paying by the sentence then longest sentence is 
the best active learning approach.
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It is reasonable to assume that EVSIi ≈ α LengthSenti, because longer sentences 
tend to have more information in them. If ECSIi is constant for sentences of any 
length, then EBPBi ≈ α LengthSenti and selecting the longest sentence is a reason-
able policy if you pay by the sentence. On the other hand, if your annotator charges 
by the word, then ECSIi is also ≈ α LengthSenti. Thus EVSI will tend to be larger 
with larger sentences, but so will ECSI, and a measure of the uncertainty per word 
(NQBU) is now the preferred measure. 

When using active learning and paying by the hour it is important to know approxi-
mately how long you expect your annotators to take to annotate a given sentence, 
and use this expected time and their hourly rate to approximate ECSI. Then using 
an approximation to EVSI you can compute EBPB =EVSIi/ECSIi. This will ap-
propriately penalize longer sentences because it will take your annotator longer to 
annotate them. Thus, without some model of how long it will take an annotator 
to annotate a sentence it is impossible to correctly determine whether that sentence 
should be selected by active learning. This observation motivates the user study 
which we will present in the next section.

6. User Interface and Modeling ECSI
We have seen that ECSI is an essential component of active learning. Aer this 
paper was presented but before the time of this writing, we performed a user study 
motivated by the above ideas to determine the expected time for annotating the part 
of speech of a sentence in English with the Penn Treebank tagset (Ringger et al., 
2008). The user interface made suggestions based on the machine learner’s current 
model and the user only had to change those words that were annotated incorrectly. 
Using the data om this study we developed a linear model for part of speech an-
notation cost suitable for use as the expected annotation cost in the context of Ac-
tive learning algorithms. The final rational cost model is: ECSIi =3.795 li + 5.387c 
+ ⒓57, where l is the length of the sentence and c is the number of words the 
user had to change. The resulting model has an appealing intuitive interpretation: 
the annotator reads each word and decides whether or not it needs to be corrected 
(⒊795 seconds per word); correcting a word takes (⒌387 seconds per correction); 
finally, there is ⒓57 seconds of overhead per sentence.
The model uses only a small subset of the raw statistics we collected. There are 
two reasons for this: first, some of the statistics which we collected (for example, 
“Self Evaluation of Tagging Proficiency”) were not included in the model because 
we explicitly wish to assume that tagging will be conducted by a mix of people with 
tagging skills similar to the mix of skills tested in the user study. Second, some 
variables fail to have a statistically meaningful effect on the resultant model. We 
employed linear regression and the Bayesian Information Criterion (as implemented 
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in the LEAPS package in R) to assess which variables should be included in the 
model.
We intend to repeat this study for Syriac and would expect the results to be differ-
ent depending on the language, the tag set, and the user interface. The results of 
the user study provide an expected approximation to the cost of sample information 
and will be an essential element to any effective active learning technique for lan-
guage annotation. Furthermore, the amount of overhead (for English approximately 
⒓57 seconds) can have significant impact on the best way to present data to the 
annotators. It may be better to give the annotators a single most uncertain word in a 
sentence and ask them to only correct that one word so that they do not waste time 
on other words in the sentence which the computer may already have a good model 
for; or, it may be better to let them annotate the rest of the sentence since they have 
already paid the overhead. A user study is imperative for making such decisions. 
Notice that the cost model implies that there is some overhead in reading each 
sentence. This could imply that the best user interface would ask annotators to 
annotate all the words in a sentence while they already have the context in mind. 
On the other hand, if fixing a single word in the sentence can drastically lower the 
uncertainty in the rest of the sentence such that the rest of the sentence need not be 
annotated by a human, then it will be better to annotate a word at a time.
Notice also that, for our user interface, the cost model is directly related to the ac-
curacy of the classification machine learning model. The better the machine learn-
ing model, the fewer corrections the user has to make. For our user interface, these 
corrections accounted for a large proportion of the cost. This means that improve-
ments in the machine learning model allow us to collect more human annotated 
data because that human annotated data is now cheaper.
Any other technique for speeding up human annotation will clearly result in being 
able to afford more human annotation. Thus, any active learning project for corpus 
annotation should involve the development of the best user interface possible. Time 
spent designing and evaluating user interfaces can have significant benefits later on. 
The best interface will likely differ om language to language. Changes in the user 
interface can affect more than just the speed with which an annotator annotates 
data. Different user interfaces can lead the same annotator to different levels of 
accuracy. Multiple user interfaces should be proposed and then evaluated for both 
speed and accuracy.

7. Dealing with Human Annotation Error:

Until now we have assumed that human annotation reveals the true tag y. Unfortu-
nately, human annotators are not one hundred percent accurate. Therefore a class/
tag/annotation is never actually directly observed. Rather an annotator’s opinion 
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concerning the correct class is observed. An example graphical model that takes this 
into account for three different annotators is shown in Figure ⒍

These changes to the model will have implications for active learning. We are no 
longer interested in selecting the most important y node, but in selecting the most 
important annotation node Aa,i (where a is the annotator involved and i is the in-
stance to be annotated). For example, if annotator number 1 is willing to annotate 
another example then the goal of active learning would be to select om the A1,i 
nodes the node that provides the maximum improvement in expected utility. 
The optimal solution will come om directly solving the EVSI equations on the 
annotation nodes of the model, but this is again too computationally intense and a 
heuristic is needed. Luckily, if we are using uncertainty to model the EVSI of sam-
pling a given annotation, and if we assume that our uncertainty about an annotator’s 
annotation is proportional to our model’s uncertainty about the class y, then we can 
fall back to QBU on the y nodes. This means that the active learning technique can 
remain relatively unchanged and still accurately model the situation.
Although the changes to the model did not significantly change the active learning 
approach, they do significantly affect the machine learning technique. The effect of 
an annotator’s annotation on the machine learner’s belief about the class y should 
be directly modeled p(Aa|yi). Typically human annotations are used as training ex-
amples for the machine learner. This approach ignores the fact that there could 
be errors in the human annotations and relies on the machine learning algorithm’s 
robustness to noise to compensate for this shortcoming. This can be problematic, 
especially when combined with active learning. This is because both the actual 
EVSI calculation and the QBU approximation are both dependent on the uncer-
tainty of a given word aer it has been annotated by a human annotator. Although 
the new model didn’t change the active learning technique, it will change the values 
that the active learner will use to make decisions through changes in the machine 
learner. The uncertainty of an annotation aer a human has already annotated it is 

Figure 6: The annotator’s annotations are observed.



38 James L. Carroll et al.

an important piece of information, especially for determining if a second annotator 
should be used to validate the results of the first. Unless we can compute the prob-
ability of an error aer an annotator has annotated a word, then the active learner 
cannot appropriately make this decision. This means that machine learning tech-
niques that incorporate probabilistically annotated training data are necessary in 
order to take full advantage of active learning with multiple annotators. 
Recent projects like Wikipedia and YouTube have illustrated the promise of user 
generated content on the web. Opening the corpus creation process to user involve-
ment can be beneficial since it could increase the number of annotators available. 
Unfortunately, the quality of annotations obtained in this way can vary widely. In 
such situations average annotator accuracy is insufficient, and it is important to 
model each annotator’s abilities separately. If we could spot a bad annotator, and 
appropriately adapt both our machine learner and active learning technique to his 
level of ability, then we could allow anyone to provide annotations with no fear 
that they could lower our overall accuracy. 
The model in Figure 6 is only correct if we assume that all annotators are equally 
accurate in their annotation abilities, a simpliing assumption that may be reason-
able for some applications. However, in order to model each annotator’s abilities 
separately we need to model p(Aa,i|yi,ca), as shown in Figure 7, where ca represents 
the annotation abilities of annotator a. 

Figure 7: Modeling the accuracy of the annotators.
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This more complex model also has implications for active learning. Now there 
are two possible reasons why a sample location could have value. Each annotation 
provides information about the true value of the class (and thus about the model 
f ). Each annotation also provides information about ca the annotation abilities of 
annotator a. Again the optimal solution could be found through the EVSI equa-
tions. Interestingly enough, this optimal solution could involve giving an annotator 
a problem with a well known solution because it teaches us about the annotator’s 
annotation abilities. An active learning algorithm must balance the need for in-
formation about the annotator’s abilities with the need for information about the 
class. These desires can sometimes be mutually exclusive since querying in locations 
where y is known with some high degree of certainty oen gives more information 
about the quality of the annotator, while sampling in locations where y is unknown 
oen gives more information about y and f. The principles of decision theory and 
EVSI will automatically balance these issues. 
If EVSI in the simple network was intractable then this is far worse. Therefore 
a heuristic is again required. Luckily, it is possible to learn about both f and c 
simultaneously, and they are not always mutually exclusive. Even when we sample 
a location with high uncertainty we will still learn something about c. There are 
at least two reasons for this. First, the quality annotators will produce annotations 
that lower the entropy of the model. The model f imposes some belief about y, 
and if an annotator is consistently proposing annotations that are unlikely given 
the model f, then the most likely reason is that the annotator is making mistakes. 
This is especially true if all the other annotators are proposing annotations that are 
consistent with the model f. Secondly, sample locations that are unknown now will 
become more certain aer more data is collected at which time they can provide 
more information about c. 
This means that we can oen fulfill both goals at once. Several possible approxi-
mate policies could be tried. For example, a subjective prior could be chosen to 
estimate the initial probability of annotator error. Then we could begin collecting 
annotations. Assuming that our prior is correct we could build a machine learning 
model (compute p⒡). Then assuming that the model is correct we could rec-
ompute the annotator’s accuracy c. This process could be repeated in an EM like 
fashion. Once sufficient data is available for each annotator, then we could begin 
to model the abilities of each annotator separately. Infinitely more complex models 
could also be imagined. Some annotators could be better at certain tags and worse 
at others. Whether or not to take such factors into consideration will depend on the 
complexity of the model created and on the amount of available training data.
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8. Consequences, Conclusions, and Future Work:
The purposes of this research has been to analyze the machine learning sequence 
annotation problem om the perspective of Bayesian utility and decision theory 
and to make suggestions based upon these observations that can be used to im-
prove accuracy and decrease cost in the upcoming creation of an annotated Syriac 
corpus. It is hoped that many of these suggestions will be widely relevant in other 
annotated corpus creation projects. We will now present several suggestions based 
upon the observations made above concerning: how to deal with different parts of 
the corpus having different requirements of quality; building a user interface to 
minimize ECSI; performing a user study to assess/approximate ECSI; estimating 
the quality of an annotator; necessary modifications and enhancements of the ma-
chine learning algorithm itself; and selecting examples for active learning. 
We propose the following technique for performing selection for active learning. 
ECSI should be first minimized using various user studies on several possible user 
interfaces. QBU or QBC can be used to approximate EVSI, and then ECSI can be 
approximated appropriately depending on the method used for paying annotators. 
If annotators are paid by the sentence or by the word, then ECSI can be computed 
directly. If they are paid by the hour, then this value can be approximated through 
user studies. There is some utility in giving an annotator a problem with a known 
solution; however, with enough data we will eventually learn the abilities of any an-
notator so specifically sampling for this purpose is less important. We propose that 
a good prior for the abilities of annotators can be selected subjectively. A few set 
questions with a known solution could be initially asked each annotator to refine 
this prior, but the number of such questions need not be large. Samples should be 
taken in locations with the highest EBPB. The abilities of each annotator can then 
be refined in an EM like fashion as detailed above.
In order to take advantage of these suggestions and observations the machine 
learning algorithms used will need to have several properties. Obviously simply 
solving the Bayesian network gives the theoretically optimal solution but will be 
computationally intense. Algorithms used as an approximation to this network will 
need to be able to report its uncertainty, preferably over the possible annotator’s 
responses, but at least over the possible output tags y. This measure of uncertainty 
is essential to QBU. Next, an approximation will need to be able to deal with 
probabilistic training data. In other words it will need to be able to deal with train-
ing data that comes om an annotator with a known error rate and to be able to 
deal with different annotators each with different error rates. Our current MEMM 
machine learners report their uncertainty but currently do not deal with uncertain 
training data. Creating a learner that can handle probabilistic training data is an 
important part of our future work. 
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This work has been primarily theoretical and motivational. Its purpose has been to 
motivate the research that will follow. Many of the unsubstantiated claims of this 
paper will be validated in our upcoming publications. These future publications 
include: a publication on the details of the user study (in submission); experimental 
exploration of EBPB active learning (in submission); mathematical and experimen-
tal exploration of the connections between EVSI, QBU, and QBC (in preparation); 
and the eventual publication of the Syriac concordance and corpus itself. We refer 
the interested reader to these forthcoming publications for further experimental 
verification of these ideas. 
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