
Nota et Ignota: Problems and Desiderata in
the Constitution of e-Corpora.

Emanuele Dolera, Federico Giusedi, Aledo Rizza
Università degli Studi di Pavia

1. Introduction1

1.1 Corpora of ancient texts
A corpus of ancient texts can be defined as a set of historical artifacts: we can actu-
ally say it is a conventional mapping of historical artifacts into a set, thus, in a sense,
it is an “artifact” in itself. The original item⒮ of such a set are written texts that
are preserved by a direct2 or indirect tradition: not every element in it is usually well
preserved or perfectly survived. Some elements may be damaged (as indeed we know
there’s normally a large amount of them) so we must cope with a potentially infinite
number of mistakes and misprintings (both ancient and modern). A digital version
of a corpus of ancient texts should be defined as a set of digital information being
isomorphic to the original corpus and satising the need for authenticity. Digital
information are character data (CDATA) or other Objects, like images or other
multi-media files, able to represent the nota and the ignota . We believe that what is
known is as important as what is unknown for the constitution and the understand-
ing of any corpora. Our electronic corpus should then guarantee full accessibility
and validity. In this paper we will present a particular approach to language corpora
constitution and analysis as regards the interaction between human understanding
and machine Artificial Intelligence.3

1.2 Two Directions
We consider two different approaches to electronic-corpora constitution. With
the first one a maximum of descriptive information, provided together with the
data to the computer, constitutes an electronic corpus fully capable to offer all ba-
sic information for all operations that we would define as ‘deductive’ (analytical).

1 We would like to express our gratitude for having accepted our paper and given us the occasion
to present our projects and idea. We will subdue to your attention our problems and our perspec-
tive in the realm of electronic-corpora constitution. We will base our reflections principally on
Anatolian texts taking the problematic of cuneiform and hieroglyphic documents as examples and
as training material. The work in this project has been undertaken by all three authors with their
different competence; in particular, §3 is to be ascribed to Emanuele Dolera; §2, §4, §⒍2 to §⒍7
to Federico Giusedi; §1, §5 and §⒍1 to Aledo Rizza; the remaining to the three authors.
2 We consider as direct tradition, for the sake of convenience, also monumental texts and other
material culture carrying written evidences.
3 We save for another occasion a discussion about which soware should be preferable to realize
the project.

60 Emanuele Dolera et al.

A rather different approach requires a more interactive involvement on the side of
the machines. Instead of providing a full description of the content, the computer
is given a powerful set of computations with which becomes possible the evaluation
of minimal and “tentative” heuristic information. The researchers are then allowed
to propose different hypothesis at different stages of the “creation” of the electronic
corpus. This approach should be mostly interesting in the case of partially or totally
unknown languages.

2. A theoretical four-step algorithm

2.1 General structure
For the automatic processing and marking up of a corpus of ancient texts, we pro-
pose a four-step Expectation-Maximization to be run by a computer or a net of
computers.4 In some features, our system will show some differences om the clas-
sical Expectation-Maximization [Dempster et Al., 1977] and Hidden-Markov-
Model5 protocols. Such differences are due either to the necessity of saving time and
space in terms of algorithm complexity and input size or to the mechanical features
that, we reckon, lie behind the structure of the linguistic analysis of a complex set
of written texts (which may contain different languages, damaged sections, scribal
mistakes and so on).

2.2 Overview
The four steps of the algorithm are respectively:

• STEP ⒈ The soware will link all the symbols in the texts to a database with
a unique identifier6 for all the signs of a script; once it has completed the linking
phase, it will find out the correct order of reading (that could be right to le,
le to right, top down, bottom up or even complex or chaotic).7
• STEP ⒉ Once the signs identity and disposition is recognized, the soware
finds out the correct value of each sign (in case of multiple values, like in
cuneiform and hieroglyphic Anatolian scripts) and then proceeds to separates
distinct words.

4 A step 0 is to be postulated: it represents the input phase before the soware begins to run.
We assume an automatic collection of data to be processed; if it doesn’t exist, like in the case of
Hittite (as well as Akkadian and Sumerian) cuneiform documents, data will be input in the form
of a standard diacritical philological transcription, in order to give the machine all information it
needs to start.
5 C. [Y. Ephraim and N. Merhav, 2002].
6 Let us consider for instance Anatolian languages. For a database containing the list of all the
signs of Cuneiform Hittite (and Hattic, Palaic, Cun. Luwian), we will base ourselves on the sign
list by [Rüster and Neu, HZL]. For Hieroglyphic Luwian scholar in Anatolian will have to com-
pare different works (two, at least: [Marazzi, 1990] and [Hawkins, 2000]).
7 On this problem, see [Shou de Lin et al., 2006].

Nota et Ignota: Problems and Desiderata in the Constitution of eCorpora 61

• STEP ⒊ Working on a minimal DB of words, the soware will identi
recognizable segments as spy-words and it will map them all over the documents.
It will then proceed dividing the text in conventional sentence-like sections
(assuming as a provisional rule that one sentence can only contain a single spy-
word).
• STEP ⒋ Finally, it will attack unknown words with a cluster strategy in order
to recognize them and to proceed with learning; all new data will be re-used as
new cycle input.

2.3. The algorithm as Coherence Tester
This algorithm is thought to be isomorphic to the process of investigation of a
corpus by a scholar. It is not just a mere “storing” device for data scholars already
know, but it represents also a heuristic tool. Its application to languages that are
still nearly unknown obviously will not converge to optimal results in a reasonable
time. Nevertheless it is possible to weight the internal coherence and the likeliness
of a set of different theories built upon hypothetical inputs. A very incoherent set of
hypothesis would generate a low output set of probabilities within a corpus, while a
coherent one will approximate to the values of a well attested data-set.

3. Step 1: About the best choice of linear ordering
This section deals with general processes to discover the writing order for types of
two-dimensional ancient scripts. We provide different algorithms, taking care of
indicating the computational complexity. The exposition is split into four subsec-
tions, in which are described the different stages: the planning of the model, the
probabilistic operations with their theoretical justification and the choice of a linear
ordering with a final improvement of the previous steps.

3.1 Modeling
The starting point is just algorithmic. First of all, the computer might recognize the
various symbols and collect them in a complete data-base. For our aim, knowledge
of single symbols is evidently not sufficient, so we focus attention on very short
ordered sequences of characters, such as couples or triples. For simplicity, we are
going to treat only couples.
Thus, let us think of the text in consideration as an r × s matrix of (possibly unknown)
characters, r being the number of lines and s the number of columns; the graphical
elements of the text are indexed in the standard way, following a le-to-right order
for the line index and a top-bottom order for the column index. The computer can list
all the different couples found in the text by considering, for every symbol, those in its
immediate neighborhood, which are at most eight; we can assume that the language
in consideration logically allows only these aggregates. The creation of a data-base
with all the couples requires an algorithmic complexity of type O(n), with n = r · s.

62 Emanuele Dolera et al.

From a probabilistic point of view, this data-base constitutes a finite sample space Ω
 = {ω1, ω2, . . . , ωN}, where each outcome ωi stands for an ordered couple.
To conclude this preliminary stage, we may think about all the possible linear ar-
rangements of the symbols, disposed in the two dimensions. Gathered here are
some fundamental conventions which seem rational to us. Firstly, the starting point
is always the symbol in position (1,1), located on the line at the top, on the le
column. Then, the sequence of characters must rigorously obey a neighborhood
principle, that is the successor of a symbol in position (i, j) can be only one among
those in position (i + 1, j), (i, j+1) or (i+1, j+1). Aer connecting consecutive sym-
bols, the resulting line must not intersect itself. Aerwards, we consider only linear
orderings of horizontal or vertical type, with the proviso that the typology can not
change om one to another in the middle of the text. Moreover, an arrangement
of horizontal-type is organized on couples of lines, that is an element in the ith line
cannot be connected with any element in the (i+2)th line before reaching the last
column; an analogous statement is in force for vertical-types. We are implicitly as-
suming that the right linear orders of the symbols share all the above-mentioned
properties and, om now on, the terms ordering and arrangement will designate
only those with those features.
One further consideration about orderings is necessary. The number of all possible
arrangements increases exponentially with n, so, when n is large, it is useless giving
an algorithm which considers all the arrangements. Indeed, let N(k) be the number
of ways in which one can read 2k symbols equally organized, for example, on two
lines; for convention it is not included in N(k) the canonic order, in which every line
forms a disjoint sequence om the others, and each line is read om le to right.
Then, N(k) satisfies the recurrent relation N(k) = 2 [N(k − 1) + N(k − 2)] when k
≥ 3, together with initial conditions N⑴ = 1 and N⑵ = ⒊ To overcome the dif-
ficulty of the exponential complexity which this system yields, we can start fixing
a number k, not too small, for which N(k) is reasonable for the computer. Then,
we construct global orders starting om groups of 2k symbols. For horizontal-type
orders we proceed considering all the N(k) possible ones, together with the canonic
one, formed with the first 2k symbols in the first two lines if k ≤ s, while, if k > s, the
arrangements extend to more couples of lines; each arrangement is then repeated
periodically to the whole text. The same procedure is applied to the vertical-type
orders. In this way, we have defined the class of linear orders we want to investigate
in which we hope to find the right one. In every case, this class can be modified
while getting more and more information. This point will be clarified in the final
remarks.

3.2 The probabilistic algorithm
This probabilistic investigations are inspired to the first Shannon’s pioneering
works on noisy channels.

Nota et Ignota: Problems and Desiderata in the Constitution of eCorpora 63

Knowledge about the probabilities of couples of symbols in the examined text would
lead to discover the correct ordering for the script. Indeed, let us consider the same
value of k for which N(k) is reasonable for the computer and let us list all the ar-
rangements Ah of the first 2k symbols, where h = 1, 2, . . ., N(k). For each Ah one
has an ordered sequence of couple, namely ωi1(h), ωi2(h), . . ., ωi2k−1(h), and this gives
a reasonable form for the probability of Ah by the formula P(Ah) = Π2k-1 pil(h), where
pm := P({ωm}).

l=1

Thus, the correct ordering Ah*

can be found by

 h* = argmax1≤h≤N(k)P(Ah) . ⑴

This procedure is then extended to the next group of 2k characters and so on.
When the a-priori probabilities of the couples are unknown we can proceed by con-
ditioning, observing the situation under the hypothesis that Ah is the right ordering.
We start defining the conditional probabilities given an arrangement, pih := P({ωi} |
Ah), simply computing the frequency of appearance of the ith couple, following the
arrangement Ah. Then, we introduce, for every arrangement, the following distribu-
tion functions
 #{i | pih

 ≤ x}
 Fh(x) := —————— (x ∈ ℜ) ⑵
 N

where # stands for the cardinality of the relative set. Note that they all have support
in the interval [0, 1]. These functions tell us how the probabilities distribute among
the possible outcomes. For example, if the pih uniformly distribute (i.e. pih ~ 1/N),
the relative Fh approaches a degenerate distribution with unit mass in 1/N, which
denotes that the values of the probabilities are all concentrated on the mean; on the
contrary, Fh is similar to the uniform distribution when the probabilities pih are
variable and “spread” on the various outcomes. The test for the choice of the good
ordering is conducted by comparing the Fhs with a fixed probability distribution
function G, using probability metrics, such as the Kolmogorov distance:

 dK(Fh; G) := sup|Fh(x) − G(x)| .
 x∈ℜ

Other significative choices are the Lévy distance or the Gini-Kantorovich-Wasserstein
distance. See the book of [Rachev, 1991] for their definitions. The choice of the
ordering is done by the formula

 h* = argmin1≤h≤N(k)dK(Fh; G) . ⑶

This operation requires a complexity of type O(N · N(k)), which can be reduced
to O(N(k)) using smoothing techniques. We noticed that this kind of test, which
vaguely recalls a Kolmogorov-Smirnov test, is statistically justified by the mean of the

64 Emanuele Dolera et al.

Glivenko-Cantelli Theorem, since we are assuming that the function G is derived by
the real distribution of the couples.
The conclusive issue is the construction of the function G: we suggest to start with
a Beta distribution, whose parameters can be estimated with Bayesian techniques. We
can give different p-quantile or an estimation of the variance, which says how sure
we are of this construction. For example, it is very significant the action of couples
which are—according to our taste—meaningless. The estimation of the parameter
of the Beta can be improved in the course of the study.

3.3 Entropy methods
Another method which can be useful to face the problem of discovering the cor-
rect linear order employs entropy. We will give only a generic idea, stating that the
above-mentioned test is more powerful than the one we are going to explain. One
can define the entropy relative to an ordering H(Ah) := - ΣN pih log(pih) and find
the arrangement which minimizes it:

i=1

 h* = argmin1≤h≤N(k)H(Ah) . ⑷

Such a kind of test is statistically justified by the mean of the Law of Large Num-
bers.

3.4 Final remarks
The methods we have explained can be combined in order to get better results. In
these final remarks we discuss how the computer can improve the above-mentioned
algorithms. Recall, in fact, that we have treated only periodic orderings of period
2k: we can increase the period aer having got information. For example, if one
discovers that arrangements which do not contain diagonal connections are better
than the others, it can be re-considered the class of all the orderings without those
with diagonal connections. In this way, this class shrinks more and more and the
value of the period can increase.

4. Step 2: Signs recognition

4.1 General function
Now the system owns a string of signs and it knows in which order it has to process
them. It needs, first of all, to find out the correct value of each sign. As minimal
Expectation Input (algorithm state 0), the human compiler will give the machine a
set of conditioned probabilities to be processed by the Bayesian equation:8

8 Or, on a logarithmic scale for computational simplicity,
 n

 argmax P(s1 . . . sn) = argmax ΣP(si|si−1, si−2)
 i=1

Nota et Ignota: Problems and Desiderata in the Constitution of eCorpora 65

 n
 argmax P(s1 . . . sn) = argmax ΠP(si|si−1, si−2) ⑸
 i=1
where the random variable sn represents the sign value at the nth position, and
a cluster analysis is carried out on strings of three signs sn-2, sn-1, sn. This step
requires a big amount of starting input, since in case we give instructions about n
signs including the space separating words, the amount of data is contained in a n3
rows DB (for 50 sign values, a good input for Hittite cuneiform, we would have 105
data-rows). The advantage is that, in a EM process, aer this starting instruction
the soware will be able to go on building the DB until all the sequences have been
studied at least once, during the preceding cycles of the algorithm and specifically
of step ⒉

4.2 Sequences and ghost space
The reason why we prefer to work on triples of signs is determined by the need to
discover word divisions. Single words are not always graphically marked in writing
systems such as cuneiform Hittite. Using triples of signs, we can ask the computer
to analyze each single sign as hypothetically included between “two spaces”,9 and
conont the related probability with the probabilities of strings with a minor or null
number of spaces. In this way, using the above equation just once,10 we will be able
to separate words and to recognize the correct value of multiple signs. Clearly, in
case spaces are sometimes noted and sometimes ignored within the original script,11
the sporadic presence of a graphic space will affect the probability for a linguistic
boundary to fall in a certain position; in case spaces are always marked, this step
can be simply ignored (or run without any consequences, setting the ghost spaces
equency to 0).

4.3 Processing lacunae
In ancient documents, a peculiar typology of blank space can also denote a missing
part (lacuna) of the text, or a damaged one. Luckily, the direct input in step 0
should instruct the computer how to recognize this accidents om the spaces lying

9 We will call these interruptions “ghost-spaces”, because we do not know if linguistic spaces are
always marked and if a graphic space represents a linguistic boundary.
10 The minimal supported triple will be space-sign-space, which is necessary in order to process
words division.
11 This is for instance the case of cuneiform Hittite, where spaces can either be noted or ig-
nored. Moreover, in some cases a graphic long space is inserted by the scribe for sake of elegance
or in order to fill in all the space in a row of the tablet, even though no linguistic boundary exists.
In that cases, we should probably distinguish between ghost spaces (hypothesized by the soware),
good graphical spaces (short ones on the tablet), bad graphical spaces (very long ones on the tab-
let). This situation represents a clear example of the inconsistency of some writing systems. For
graphic inconsistency see [Sproat, 2000, passim].

66 Emanuele Dolera et al.

between signs and words, so we have just to care about the way the soware has to
treat them. We can isolate two different cases, in which the machine will differently
behave.

• The lacuna (or the damage section) is a short one. How short is up to the
human compiler to decide; the soware will try and integrate it using a reverse
probability function on the sign or the word variable. Note that any Bayesian
equation of form P(Z|Y) can be reversed respecting the theorem:

 P(Z|Y) P(Y)
 P(Z|Y) = ——————
 P(Z)

• The lacuna is a long one. The soware will simply renounce to solve it and
proceed analyzing om the first recognizable form following the problematic
section.

For sake of homogeneity, and in order to let the Markov chain proceed, we have to
assign a dummy-value to the probability of elements to occur aer a lacuna. In order
to limit the damages, we will assign a neutral value to it, so that for each variable X
in any step of the algorithm, we define: P(X|Lost) = ⒈ This will guarantee that the
lacuna will not negatively influence the ongoing of the process.

5. Step 3. Collecting words and first tentative attribution of functions

5.1 Overview
Aer step 2, the soware will analyze any sequence between two linguistic boundaries
as one word. Step 3 consists in cononting these words with an input database of
words and morphemes. The system will try and recognize words belonging to a
word class with a high rate of morphological variability (or some other rules), and
will hypothesize for this set of words to be VERBS. It will then re-run the text and
mark this words (that have become now spy-words) as VERBS in the DB of words
and in the text.

5.2 Analyzing the DB
Until now we have failed to talk about one of the principal element in corpora
constitution: the so called “tokenization”. Our system is a multi-layered one so
there might be different levels where to apply the “token-type” scheme. For the
definition of these concepts we are now referring to [Barbera - Onesti - Corino,
2007, pp. 35-37 and passim] where correct reference is traced back to semiotic and
logic, specifically to the work of Peirce and Quine. At the level under consideration
in step 3 a token will be any instance of a graphic word (actual or reconstructed) as
devised by the algorithm. Now the system can perform all the analytical operations
that we consider important; in what follows I will just mention some of them.

Nota et Ignota: Problems and Desiderata in the Constitution of eCorpora 67

First we need an orderable index of all tokens with sums and equencies; tokens
should be reduced to types and an index of types with sums and equencies will
be built. Then we must consider sequences of tokens together with their relative
equency and estimation of conditional probabilities all gathered within a table of
concordance. How to find sequences is a task of minimal effort for the computer.
The system will simply start with the first token and will consider all the possible
strings of consequent tokens starting with the same initial token and it will note
their equency; when it finds a string with equency 1 it stops building strings
om the first token of the text and starts again in the same way with the second
token. So if i is the index indicating the starting point and f(i,k)with k > i is the
equency of strings of subsequent tokens i, i+1, . . ., k, every time f(i,k) = 1 a
new starting point is selected immediately aer the one just used. Another set of
operations will put forward morphological evaluations12 on tokens using available
information on equencies and conditional probabilities together with hypothesis
introduced by the researchers. These operation will ultimately lead first to the
individuation of possible identification of radicals/stems and affixes and, then, to the
identification of tokens with a particular function, like a verbal predicative one. The
last moment of step 3 consists in marking all tokens (spy-words) with their inferred
functions all through the text.

6. Step 4: Sentence boundaries and further word recognition

6.1 Sentence Boundaries
Now that we have marked some tokens as spy-words all over the text (e.g. verbs,
like in row 1 and 2 in the following table). We will enucleate homogeneous strings
containing only one spy-word. Let’s consider the spy-word is a verb:13 the system
will order the surrounding tokens following rules determined by a binary parameter
of prominence in the order: verb (marked as V in the table below) - not verb
(marked as ? in the table below). With the parameter set to le-prominent (as will
become clear this parameter indicates a verb-final syntactic alignment), the first sign
to the le of every V will be given value 1, the first on the right value 2 and so on
with odd values to the le and even ones to the right; the other way round with the
parameter set to right-prominent (verb-initial alignment). In cases of overlapping
values, e.g. token 235 with value 4/1, for sake of homogeneity the lower or the odd
value will be preferred and so the assignment of the element to the sentence (at the
moment a ‘sentence’ is a cluster of tokens that contains just one V), as you can see
in row 3 or 4 in the table below:

12 Such evaluation can be based on simple engines working with classic word similarity functi-
ons applied to words showing analogue variations in paradigms or flexional behavior, which may
be supposed to belong to a same class.
13 We consider this situation as the best for many languages.

68 Emanuele Dolera et al.

Unmapped Tokens 231 232 233 234 235 236 237 238
Mapped ? ? V ? ? V ? V
Le-prominent 3 1 V 2/3 4/1 V 2/1 V
Right-prominent 4 2 V 1 3/2 V 1/2 V

When the choice between lower vs. odd value is set to ‘odd’, a verb-final or verb-
initial alignment is considered (e.g. a SOV word order); when it is set to ‘lower’,
the word order considered is more of the type SVO (OVS).

6.2 Segments
For the first many cycles of the EM algorithm, we will have to deal with the
problem of recognizing words that are not yet owned, with a sufficient range of
certainty, by the DB in step ⒊14 The goal of step 4 is to carry out a cluster analysis
on strings of words in order to maximize the probabilities of word classes to occur
in a certain position and to contain a recognizable morpheme that may be already
known by the DB in step ⒊

6.3 General function
The core function of this step will run only as long as the DB in step 3 is not
able to recognize all words. Hence, it is potentially running forever, surely with
lower equency as the cycles proceed. Its form is a little different om the normal
Hidden-Markov-Model and Expectation-Maximization Bayesian engines, since we
chose to consider with it two factors that are, in our opinion, very loosely coupled,
such as the word form and the word position within a text. Let cn be the nth word-
class in the string, and let mn be a recognizable morpheme being present in the nth
word of the string. The equation to be maximized should have this general form:

 n n
 argmax P(c1 . . . cn) = argmax ΠP(ci|mi) + ΠP(ci|ci-1) ⑹
 i=1 i=1

and the minimal input will be constituted by a set of data about equencies of
words in a given position with respect to the spy-word.15

6.4 Log scale
Let us limit ourselves to the two main parts of the equation (call them P1 and
P2). Each part is represented by a serial product of conditional probabilities: the

14 For discussion see above ⒍⒈
15 E.g. a noun, an adverb, an adjective following or preceding the verb or the i − 1th aer the
verb, and so on until the whole segment is processed.

Nota et Ignota: Problems and Desiderata in the Constitution of eCorpora 69

first peculiarity of this equation is that it is isomorphic to the union of two Markov
chains. This simple fact is problematic in terms of computation, since the study of
max and min will be very difficult for the computer. In fact, even though we can
convert both elements P1 and P2 into a homomorphic logarithmic scale,

 Σn logP(ci|mi) and Σn
 logP(ci|ci-1),

i=1 i=1

we cannot map on the same scale the whole function, so we have to renounce
reducing products to sums.

6.5 Why sums?
By this point of view, it would look better if we chose to multiply P1 and P2 instead
of summing them:

 n
 argmax P(c1 . . . cn) = argmax ΠP(ci|mi)P(ci|ci-1)
 i=1

but, on the other hand, such a solution would generate, in our system, a peculiar
problem. A low entry for one of the two factors would annihilate the other one,
even though its own value is very high.16 The insertion of the sum helps the system
to save hypothesis that output, for instance, a high probability given a position
and a low one given the morphematic evidence. The first important consequence
regards the processing of problematic ignota. If the soware meets an adverb for
the first time and doesn’t recognize any clear adverbial morpheme, it will anyway
consider the fact that the word occurs in a convincing position for adverbs (or
viceversa for a recognizable word in a position that is processed for the first time).
Since the EM is always learning something new, in the first cycles it will not possess
all the data about syntaxis and morphology, so this “caution-device” is absolutely
necessary. The second consequence regards instead the processing of scribal errors.
Sentence “This fish is is not tasty” contains a repetition, while sentence “This fish
is not tasty” is a correct one. The repetition would automatically compromise the
positional structure of the sentence; in other words the probability will be close to
zero (formally, if w = ‘verb’, P(wn+1)|P(wn) ≈ 0). Any serial product would give a
close-to-zero output value. Since these two sentences are semantically equivalent
and for many aspects similar to each other, we don’t want them to have a very
different probability output. The insertion of a sum would limit damages and avoid
one of the functions have a close to zero value. We propose to call this property
stability.

16 In other words, the problem is simply that limP1→0 P1 × P2 = 0 for each value of P2 and
limP2→0 P1 × P2 = 0 for each value of P⒈

70 Emanuele Dolera et al.

6.6 Final arrangements
Let us now go back to equation ⑹:

 n n
 argmax P(c1 . . . cn) = argmax ΠP(ci|mi) + ΠP(ci|ci-1)
 i=1 i=1

For definition:

 0 ≤ Πn
 P(ci|mi) ≤ 1 and 0 ≤ Πn P(ci|ci-1) ≤ 1. i=1 i=1

 Let us assume they are autonomous and observe their behavior as two separate
elements. If no weight intervention is operated, given two possible maximum values
fitting P1, P2 and P1΄, P2΄ with P1 = P2΄ and P2 = P1΄, we will see that both
solutions satis equation ⑹: this fact defines a symmetry.
In other words the maximum is not unique. Operating a choice between two
identical (or very similar) values that maximize ⑹ for a string means privileging the
information about the morphematic structure of words or the information about
their position within the string itself. Clearly, we must instruct the soware about
our priorities, and in order to do it we will insert two parameters α and β, summing
up to 1, that will affect the output probability values of both P1 and P⒉ Hence the
final form of the equation will be:

 n n
 argmax P(c1 . . . cn) = argmax αΠP(ci|mi) + βΠP(ci|ci-1)
 i=1 i=1
 where α + β = 1 (7)

6.7 Meaning of α and β parameters
The insertion of α and β permits us to operate an important selection among a
cluster of values that have a similar output but a very different meaning. Yet, the
idea of setting them before cycle 1 and saving them until the corpus is completed
would be problematic. In fact, the accuracy of the soware with respect to syntax
and morphology may vary while the cycles proceed. Probably when the DB in
step 3 is nearly completed for all attested words, the morphological data set will be
so heavy that parameter α should tend to 1, parameter β to 0. Due to this fact,
we suggest to consider α and β as variable at the beginning of every new cycle.
Empirical experience will give us details about the engine of this variation.

7. Conclusion

The creation of a soware being able to support research, step by step, in both
analyzing and marking up ancient texts and corpora would be, we reckon, extremely

Nota et Ignota: Problems and Desiderata in the Constitution of eCorpora 71

important, and the state of the art technologies permit to create such a device. The
algorithm presented in this paper is a possible form such a tool can take and, we
believe, a very strong and ductile one.

References

Computer Science:
Dempster et al., 1977: A. P. Dempster — N. M. Laird and D.B. Ruby. 197⒎ Maximum
Likelihood om Incomplete Data via the ‘EM’ Algorithm. Journal of the Royal Statistical
Society. Series B (Methodological) 39/1: 1-3⒏

Ephraim et al., 2002: Y. Ephraim and N. Merhav. 200⒉ Hidden Markov processes.
IEEE Transactions on Information Theory 48: 1518-156⒐

Neal et al., 1999: R. Neal and G. Hinton. 199⒐ A view of the EM algorithm that justifies
incremental, sparse, and other variants. In: M. I. Jordan (ed.), Learning in Graphical
Models. Cambridge (MA): MIT Press, pp. 355-36⒏

Rachev, S.T. 199⒈ Probability metrics and the stability of stochastic models. Chichester:
Wiley series in probability and mathematical statistics.

Shannon, C.E. 194⒐ A Mathematical Theory of Communication. Urbana: University of
Illinois Press.

Shou de Lin et al., 2006: Shou de Lin and K. Knight. 200⒍ Discovering the linear
writing order of a two-dimensional ancient hieroglyphic script. Information Sciences
Institute, University of Southern California.

Sproat, R. 2000. A Computational Theory of Writing Systems. Cambridge: Cambridge
University Press.

Winkler, W.E. 199⒐ The state of record linkage and current research problems. Technical
report, Statistical Research Division, U.S. Bureau of the Census, Wachington, DC.

Philology:

Barbera - Onesti - Corino, 2007: M. Barbera — E. Corino and C. Onesti (eds.), 200⒎
Corpora e linguistica in rete. Perugia: Guerra Edizioni

Barbera - Onesti - Corino, 2007a : M. Barbera — E. Corino and C. Onesti. 200⒎ Cosa
è un corpus? Per una definizione più rigorosa di corpus, token, markup. In: [Barbera -
Corino - Onesti (eds.), 2007], pp. 25-8⒏

Hawkins, J.D. 2000. Corpus of Hieroglyphic Luwian Inscriptions. New York — Berlin: De
Gruyter.

Marazzi, M. 1990. Il geroglifico anatolico: problemi di analisi e prospettive di ricerca. Roma:
Dipartimento di Studi Glottoantropologici Università “La Sapienza”.

72 Emanuele Dolera et al.

Rüster and Neu, HZL : C. Ruster — E. Neu. 198⒐ Hethitisches Zeichenlexikon.
Wiesbaden: Harrassowitz.

