
Using LPath Queries to Annotate Corpora:
A Case Study of Elamite and Sumerian

Eric J. M. Smith

University of Toronto

1. Introduction

For many languages, the resources to properly annotate a corpus are simply not
available, so the linguist has only a corpus of raw text to work with. In such cases,
the linguist has traditionally had to expend considerable extra effort, manually
combing through the raw text of the corpus to find the forms which are of interest.
Even when the corpus is available in electronic form this can be a laborious process,
one which is at best a diversion om the actual task of linguistic analysis.
When, as is the case with cuneiform texts, the writing system does not clearly
represent the spoken form, the linguist faces additional obstacles. Even with an
electronic corpus and the best available search tools, locating particular morphemes
using only orthographic strings can be a tedious and repetitive task.
Since the types of queries necessary to locate morphemes do tend to be repetitive,
it is helpful to wrap useful queries in a form which allows them to be easily reused.
In addition, once the set of queries necessary to identi a particular morpheme
has been established, that query can be stored and used as the basis for further
queries.
Over time, a library of such queries can built up, with lower-level queries for
individual morphemes being used to construct higher-level queries that identi
syntactic structures of interest. Since each of the stored queries corresponds to a
linguistic element, this library of stored queries effectively serves as an annotated
representation of the corpus, one which was created without actual manual
annotation.

1.1 Motivation
The author’s primary interest is not in corpus linguistics, but rather in the
morphosyntax of agreement. The underlying motivation for the work described here
was research into the agreement morphology of Elamite and Sumerian. Both these
languages show rather exotic agreement behaviour, and understanding that behaviour
will increase our understanding of how agreement works cross-linguistically.
The difficulty is that there is no easy way to get at the relevant agreement morphology.
Corpora for these languages (where they exist at all) consist of transliterations of
the original cuneiform texts, with no morphological annotation. To make matters

122 Eric J. M. Smith

worse, the orthographic systems of Elamite and Sumerian represent morphemes in
a rather haphazard fashion, so identiing a morpheme om a string of graphemes
is not a trivial task.
The task is further complicated by the type of morphosyntax being studied. By
its nature, searching for agreement morphology requires the ability to search for
discontinuous elements within a corpus. This makes the search problem significantly
more difficult. Not only are the relevant morphemes obscured by the orthographic
system, but they may be separated by an unknown amount of intervening material.

1.2 Methodology
The original strategy was to start with a powerful, flexible query language and use
that as a basis for further development. The most promising candidate for such a
query language was LPath Bird et al. 2005, Bird et al. 200⒍ Initial work indicated
that using raw LPath queries to extract the desired agreement morphology proved
to be unmanageably complex, largely due to the peculiarities of the writing system.
To make the task more manageable, a new layer of reusable query objects was created,
to encapsulate complex LPath queries into a more manageable form.
These query objects closely reflect the language’s morphology. The end result is
that the query objects fill in for the morphological annotation which is missing
om the underlying corpus.

2. Corpora

The first decision was which corpora to use for the study. In the case of Elamite,
there are no publicly available corpora of any significance. In the case of Sumerian,
there are a number of possible corpora, and the choice of corpus hinged on the
amount of metadata provided.
The approach being described could in theory be bootstrapped on top of a corpus
which consisted solely of transliterated text. However, to keep the task manageable
it helps to have at least a minimal amount of linguistic annotation. In particular,
having a corpus which is already tagged for part-of-speech makes the queries
considerably simpler. This was a major consideration when selecting the corpus,
since the task of part-of-speech tagging would significantly increase the amount of
work.

2.1 Elamite
The Electronic Corpus of Elamite Texts (ECET) was developed by the author
Smith 2004 to store information about Elamite lexical items for research into the
language’s phonology Smith 200⒎ This was extended for syntactic research Smith
2006 to include a significant body of Elamite-language texts. This corpus encodes

Using LPath Queries to Annotate Corpora: … 123

both orthographic and morphological information, as well as translations of most
texts.
The current ECET corpus consists of 221 texts, comprising approximately 20~000
words. Texts date om the Treaty of Narām-Sîn (ca. 2250 BCE) to the reign of
Artaxerxes II (ca. 360 BCE). Due to the nature of the texts which have been recovered
om Elamite archæological sites, the bulk of them are royal inscriptions, primarily
transcribed om König 196⒌ There are also a number of small texts assembled
om the Mémoires de la Délégation en Perse and other sources Scheil 1907, Scheil
1911, Scheil 1917, Paper 1954, Lambert 1974, Grillot-Susini et al. 1993, Vallat
199⒍ Although this corpus is small by the standards of corpus linguistics, it does
represent a significant portion of all extant Elamite-language texts.
The majority of the corpus has been lemmatised and tagged for part-of-speech.
Although much of this process was automated by performing lookups in the
electronic version of the Elamisches Wörterbuch (Hinz and Koch 1987), the task
of manually annotating all the ambiguous word forms has proven to be quite
laborious.
Work is underway to add more bulk to the corpus, using texts om other Elamite-
language research projects: the Italian-Iranian DARIOSH project (Achaemenid
royal inscriptions) and the University of Chicago’s Persepolis Fortification Tablets
(Achaemenid economic tablets). Since the ECET corpus is still under construction,
the remainder of this paper will be devoted to Sumerian.

2.2 Sumerian
For Sumerian there are a number of available electronic corpora. By far the largest
collection of texts is the Cuneiform Digital Library Initative (CDLI) om UCLA
and the Max Planck Institute (Englund and Damerow 2000). It has a broad range
of texts om all periods, but the focus of the project is archæological rather than
linguistic. Consequently, the entry for each text contains catalogue information,
provenance, and images, but the texts themselves are only provided in transliteration
with no translation or morphological markup. This is also true of a number of other
smaller corpora associated with the CDLI, such as the Digital Corpus of Cuneiform
Lexical Texts (Veldhuis 2003) and the Database of Neo-Sumerian Texts (Molina
2002).
Of great interest was the Pennsylvania Parsed Corpus of Sumerian (Tinney and
Karahashi 2003), which was conceived as a hand-parsed treebank in the mould
of the English-language Penn Treebank. Such a corpus would have been close to
ideal for the purposes of identiing the morphosyntax of agreement. Unfortunately,
work on the corpus seems to have stopped, and the corpus has never been publicly
released. Inquiries with the project’s staff indicate that the corpus never got beyond
the pilot stage.

124 Eric J. M. Smith

2.2.1 ETCSL
In the end, Oxford’s Electronic Text Corpus of Sumerian Literature was selected as
being the easiest of the Sumerian corpora to work with. In addition to translitera-
tions, the corpus provides English translations, and the Sumerian text has already
been lemmatised and tagged for part-of-speech.
The ETCSL consists of 394 texts om genres which Sumerologists classi as
“literaryˮ: mythological epics, royal praise poems, literary letters, laws, hymns, cult
songs, and proverbs. The corpus totals approximately 170 000 words of text. While
170 000 words is not a large corpus by the standards of corpus linguistics, for Sum-
erian it is quite substantial.
The majority of the texts date om a fairly narrow period (ca. 2200--1600 BCE),
so the corpus is quite cohesive. Where variants exist they have been edited by the
team at Oxford into a standardised form.
The XML source files for the corpus were made available by Jarle Ebeling and his
colleagues. The corpus is organised as shown in (ETCSLStructure), with the top
level being the <text>, which represents a self-contained document, possibly sev-
eral hundred of lines long. Below the <text>, some of the documents are further
subdivided using <div1> tags (used when there are lacunæ in the text) and <lg>
tags (to group lines in certain genres, such as proverbs within a proverb collection).
These intermediate groupings are not reliably present.

⑴ Hierarchical structure within ETCSL
 [Top-level] <text>
 [Intermediate groupings] <div1>, <lg>
 [Lines] <l>
 [Words] <w>

The one grouping which is reliably present is the line, <l>. Unfortunately, in
cuneiform texts there is no particular correlation between lines and sentence
boundaries. The line is purely a scribal unit and may only incidentally correspond
to a linguistic unit. The lack of phrase or sentence boundaries is a significant
disadvantage for investigating syntactic questions, since the phenomena being
explored are expected to be scoped to a single clause or sentence.
A typical word entry om the ETCSL is shown in (SampleWord). At first glance, the
ETCSL provides a fair bit of morphological annotation. The bound attribute seemed
particularly promising, since it promises a morpheme-by-morpheme breakdown of
each word. Unfortunately, the bound attribute is only present on a handful of forms
(ergative-case nouns for instance). Similarly, the form-type attribute is not as useful
as it might be because it too is used for only a limited range of forms.

Using LPath Queries to Annotate Corpora: … 125

⑵ A sample word entry om the ETCSL
 <w form="nu-gi4-gi4" lemma="gi4" pos="V" label=
 "to return" form-type="RR">nu-gi4-gi4</w>
 [form] orthography
 [lemma] standardised citation form/lexeme
 [pos] part of speech
 [type] further sub-grouping of pos (e.g. PN, DN)
 [label] English gloss
 [form-type] morphological information on word (e.g. reduplicated)
 [bound] segmentational information (e.g. ergative-case suffix)

3. Queries

3.1 LPath Query Language
The query language being employed is LPath, developed by Steven Bird and his
colleagues at the University of Pennsylvania. Bird’s work with query languages started
with the investigation of query languages for annotation graphs (Bird et al. 2000).
In the past few years, he has turned to tree-structured data, and enhancements to a
standard XML search language called XPath (Clark and De Rose 1999). The XPath
language is intended for locating nodes within tree-structured XML documents,
so it is a natural match for the task of locating elements within tree-structured
linguistic data.
LPath does extend XPath somewhat by adding a variety of search operators which
are useful for the kinds of searches done in linguistics. These are shown in ⑶.

⑶ LPath operators added to XPath (Lai and Bird 2006)

 • -> (immediate-following) and
 <- (immediate-preceding)
 • => (immediate-following-sibling) and
 <= (immediate-preceding-sibling)
 • ^ (le-edge alignment) and
 $ (right-edge alignment)
 • { and } (subtree-scoping)

A reference Python implementation of LPath is provided as part of the Natural
Language Toolkit (NLTK) (Bird et al. 2007), an open-source collection of Python-
language tools for computational linguists. Since Steven Bird is involved with both
the NLTK project and with LPath, the NLTK is an appropriate place for LPath to
be made publicly available.
Some sample LPath queries are shown in ⑷. The first one searches for a sentence,
S, and that sentence must contain some entity (indicated by the underscore) which

126 Eric J. M. Smith

has a lex attribute with the value of “saw”. The second query is straightforward,
locating nouns which follow a verb which is itself the child of a verb-phrase. The
third query gives an example of the braces used to restrict the scope of a search to
a subtree. The fourth through sixth demonstrate how the ^ and $ edge-alignment
operators can be used to search for particular structural configurations.

⑷ Sample LPath queries (Lai and Bird 2006)
 ⒈ //S[//_[@lex=saw]]

A sentence containing the word ‘saw’.
 ⒉ //VP/V-->N

Nouns that follow a verb which is a child of a VP.
 ⒊ //VP{/V-->N}

Within a verb phrase, nouns that follow a verb which is a child
of the given verb phrase.

 ⒋ //VP{/NP$}
Noun phrases which are the rightmost child of a VP.

 ⒌ //VP{//NP$}
NPs which are rightmost descendants of a VP.

 ⒍ //VP[{//^V->NP->PP$}]
Verb phrases composed of a verb, a noun phrase, and a prepositional
phrase.

Although LPath is intended as an extension of XPath, this is not strictly true of the
NLTK’s LPath implementation. In particular, Xpath includes a large number of
built-in utility functions for string operations, type conversions, and other operations.
The LPath implementation lacks these functions, which is unfortunate since some
of the basic functions (e.g. substring) would have been very useful in certain
queries against the ETCSL corpus. Fortunately, the LPath implementation does
include undocumented support for wild-card access using the SQL like operator,
which provides a stand-in for some of the missing XPath string functions.

3.2 Adapting ETCSL for LPath
The ETCSL was made available by Oxford as a collection of XML files, but although
LPath is based on an XML search language, the reference LPath implementation
does not work with XML files, but rather with data stored in a relational database.
In order to load the XML data into a MySQL database a small Python program
had to be written.
The Python program required to load the database also provided an opportunity to
massage the data somewhat, in order to make some of the more important pieces of
information easier to access. In particular, prefixes, suffixes, and reduplication were
identified and stored as separate attributes of each word. Early experimentation with
the corpus suggested that it was useful to be able to refer to these items separately.

Using LPath Queries to Annotate Corpora: … 127

LPath queries are easier to write given the knowledge that a particular grapheme is
in the prefix or the suffix.
For instance, given a complex verb form ‹ba-an-ci-gir5-gir5-e›, the loader program
can use the ETCSL’s information that the lemma is gir5 to extract the prefix ba-an-
ci- and the suffix -e , and to recognise that the stem itself is reduplicated.
One significant piece of information which is missing om the ETCSL is information
on sentence and clause boundaries. Although clause boundary information was
unavailable, it was possible to determine paragraph boundaries, because the ETCSL
indicates which lines of the transliteration correspond to a paragraph in the English
translation. For many queries, a paragraph boundary serves as an acceptable proxy
for a clause boundary.

3.3 Query Objects
In practice, the LPath queries that are needed to extract particular morphemes can
become quite cumbersome. Consider the data shown in (Genitive), which shows
only a few of the ways in which the genitive case suffix -ak might be written in
a Sumerian text. This demonstrates the sort of mismatch which exists between
Sumerian orthography and the languageʼs morphology. Even if it were possible to
write a very complicated LPath query which located all the possible orthographic
forms for the genitive suffix, such a query would have to be used every time we
wanted to search for a genitive-case noun, which would simply not be practical.

⑸ Some orthographic realisations of the genitive case suffix -ak
• stem-final vowel assimilates to /a/ (e.g. 𒂷 ‹g̃a› aer stems ending in
‹g̃u›)
• 𒆷 ‹la› aer stems ending in /l/.
• 𒈾 ‹na› aer stems ending in /n/.
• 𒊏 ‹ra› aer stems ending in /r/.
• sometimes written as 𒀀 ‹a›
• only reflects the /k/ when before another suffix (e.g. 𒈗𒆷𒆤 ‹lugal-la-
ke4› ‘of the king-ERG’)
• etc.

Recognising this problem, the approach was to incrementally build up a definition
of a genitive-case noun using a series of queries. The queries in (BuildingQueries)
correspond roughly to the orthographic forms shown in (Genitive). At each step,
the results of a query can be examined to veri that it is returning the expected
hits. When the process is complete, the corpus has effectively been annotated to
identi (in this example) all genitive-case nouns. From this point on, the newly-
defined N-gen object is now a first-class member of the corpus, and can be searched
for and manipulated.

128 Eric J. M. Smith

⑹ Incrementally building up N-gen using a series of queries
• //N[@lemma like "%ju" and @form like "%-ja"]
• //N[@lemma like "%l" and @suffix like "-la"]
• //N[@lemma like "%n" and @suffix like "-na"]
• //N[@lemma like "%r" and @suffix like "-ra"]
• //N[@suffix like "%a-ke4"]
• etc.

This approach can be further extended to build more complex query objects out of
simpler ones. In (BuildingComplexQueries) we see how a higher-level structure,
an ergative-case noun phrase (NP-erg), can be built om the results of lower-
level queries. In this example, the definition of NP-erg depends on having already
defined queries to identi ergative-case nouns (N-erg) and genitive-case nouns
(N-gen). An ergative-case noun (typically indicated in writing by a suffixed 𒂊 ‹e›
grapheme) is inherently also an ergative-case noun phrase, so N-erg is the first part
of defining NP-erg. However an ergative-case noun phrase could also consist of a
pair of nouns with the second one bearing both a genitive-case -ak and the ergative-
case -e (manifested orthographically as 𒆤 ‹ke4›).

⑺ Building NP-erg om lower-level queries
• N-erg defined as //N[@suffix = "-e"]1

• N-gen defined as in ⑹
• NP-erg as N-erg
• NP-erg also as //N <-- N-gen[@suffix like "\%-ke4"]

Once the proper set of queries to define NP-erg has been determined, a new level
of hierarchy has effectively been added to the corpus. As mentioned previously, one
of the deficiencies of the ETCSL corpus was that it lacked any levels of structure
between the word and the entire document. The query-based approach attempts
to remedy that deficiency. Defining other phrase types, such as verb phrases and
clauses, will be somewhat more complex, but the same principles can be used.

4. Practical Example

This section gives a practical example of how the approach of building up query
objects can be used to locate data for an actual problem in Sumerian morphosyntax.
The problem is the question of so-called “dimensional infixes” which were studied
by Gragg 197⒊

1 Like the N-gen object defined in (BuildingQueries), the actual queries to locate ergative-case
nouns would have to be considerably more complex.

Using LPath Queries to Annotate Corpora: … 129

As shown in ⑻, Sumerian verbs have a large number of prefixes. The prefixes of
interest are the ones in the middle of the chain, which agree with nouns elsewhere in
the sentence: dative case, comitative case, ablative, terminative, locative, and ergative
cases. The other prefixes, such as MODAL and COǊ, can safely be ignored. One
of the advantages of this approach, as opposed to fully annotating the corpus, is that
the queries need refer only to morphemes which are of immediate interest. This is
particularly convenient for prefixes like COǊ, which are the subject of a great deal
of heated debate (Thomsen 1984,Michalowski 2004).

⑻ Prefix chain of the Sumerian verb

ABL MODAL - COǊ - DAT - COM - { } - LOC - ERG - verb – ABS

TERM

One of the questions explored by Gragg 1973 was how the prefixes on the verb
correspond to the associated nouns in the sentence. For instance, in ⑼ there is a
nice example of a pronoun with the terminative-case suffix -še (written with the
‹še3› sign), and as expected, the verb appears with a terminative-case prefix, written
with the ‹ši› sign.

⑼ Example of terminative-case agreement

 𒊕 𒆠 𒌓 𒂵 𒉌 𒂷 𒀀 𒍥 𒄷 𒈬 𒅆 𒅔 𒍣

 sag̃-ki zalag-ga-ni g̃a2-a-še3 hu-mu-ši-in-zig3
 forehead shining-3SG.POSS 1SG-TERM hu-mu-TERM-ERG.3SG-li
 ‘she lied her radiant forehead to me’

As Gragg discovered, this type of agreement is not present all the time. Sometimes
the verb has the prefix and there’s no terminative-case noun. Sometimes there is
an appropriate noun, but the verb has a different prefix or no prefix at all. In order
to explore these questions, it is necessary to define appropriate queries for the
problem.
Query definitions to accomplish this are shown in ⑽. The first query finds
all terminative-case nouns, and the second one identifies verbs which have the
terminative-agreement prefix. Queries for the terminative and other cases are
summarised in the Appendix.

⑽ Queries for locating terminative-case agreement
• N-term defined as //N[@suffix like "%-ce3"]
• V-term defined as //V[@suffix like "%-ci"] or
 @prefix like "%-ce3"]
• Ideally: //S{N-term <- V-term}
• Realistically: //PARA{N-term <- V-term}

130 Eric J. M. Smith

Ideally the scope of matching should be restricted to within a sentence (or better
yet, a clause), but, as mentioned above, the corpus does not contain sentence
boundaries. The best approximation is to scope matches within a paragraph. This
is probably adequate for the task, since we can look at all the results and throw
away the ones which are not relevant (e.g. spurious instances of agreement between
a noun in one sentence and a verb in another sentence).
This raises an important point, which is that for a task like this study of agreement
morphology, recall (i.e., finding every single example of a phenomenon) is more
important than precision. As long as the query’s result set is manageable, it can be
pruned down manually to the examples which are actually of interest.

5. Discussion

The query-based approach presented here provides an alternative when annotation
is unavailable or impractical. Although it has been presented here in reference
to Sumerian and Elamite, it should be equally applicable to other low-resource
languages where annotated corpora are similarly unavailable.
The approach is problem-specific and theory-neutral. The queries only create
annotations which are actually needed, which avoids getting drawn into philological
arguments about other morphemes. This is particularly important in languages
such as Elamite and Sumerian, where the morphology is oen poorly understood
and subject to debate.
The approach works particularly well for problems like the agreement-morphology
research which prompted this effort. In this sort of problem, recall is much
important than precision. Thus the approach can aim for 100\% recall and sacrifice
a certain amount of precision.
Importantly for languages whose orthography poorly reflects their morphology,
this approach tries to insulate the linguist om the peculiarities of orthography.
In particular, the goal is to allow the linguist to search for morphemes rather than
graphemes.
Future work with the ETCSL corpus involves trying to define query objects for
higher-level structures such as verb phrases and clauses. These are expected to be
more complex than the queries described so far, but the general approach should
still apply.
The question of Sumerian “dimensional infixes” described in §4 is only one of four
which will be explored with this approach. For Sumerian, the approach will also
be used to investigate coǌugation prefixes. For Elamite, it will be used to research
possessive constructions as well as object agreement morphology.

Using LPath Queries to Annotate Corpora: … 131

6. Summary

By defining a library of reusable query objects, it is possible to get many of the
advantages of annotation without actually having to annotate. This approach is not
specific to the languages or corpora described here, but is equally applicable to any
corpus which lacks the resources for manual annotation.

Appendix: Query definitions for Sumerian dimensional infixes

The terminology used here follows Thomsen 198⒋ Under a newer classification of
the Sumerian case system given by Michalowski 2004, the “terminative” is referred
to as the “allative” and the “locative-terminative” is referred to as “locative2”.

N-dative defined as:
• //N[@suffix like "%-ra"]
• //N[@lemma like "%-a" suffix like "%-ar"]
• //N[@lemma like "%-i" suffix like "%-ir"]
• //N[@lemma like "%-u" suffix like "%-ur"]

V-dative-1SG defined as:
• //V[@prefix like "%-a-"]

V-dative-2SG defined as:
• //V[@prefix like "%-ra-"]

V-dative-3SG defined as:
• //V[@prefix like "%-na-"]

V-dative-1PL defined as:
• //V[@prefix like "%-me-"]

V-dative-3PL defined as:
• //V[@prefix like "%-ne-"]

N-comitative defined as:
• //N[@suffix like "%-da"]

V-comitative defined as:
• //V[@prefix like "%-da-"]
• //V[@prefix like "%-di-"]
• //V[@prefix like "%-de3-"]
• //V[@prefix like "%-de4"]

132 Eric J. M. Smith

N-locative defined as:2

• //N[@suffix like "%-a"]
• //N[@lemma like "%b_" suffix like "%-ba"]
• //N[@lemma like "%c_" suffix like "%-ca"]
• //N[@lemma like "%d_" suffix like "%-da"]
• //N[@lemma like "%g_" suffix like "%-ga"]
• //N[@lemma like "%h_" suffix like "%-ha"]
• //N[@lemma like "%j_" suffix like "%-ja"]
• //N[@lemma like "%k_" suffix like "%-ka"]
• //N[@lemma like "%m_" suffix like "%-ma"]
• //N[@lemma like "%n_" suffix like "%-na"]
• //N[@lemma like "%p_" suffix like "%-pa"]
• //N[@lemma like "%r_" suffix like "%-ra"]
• //N[@lemma like "%s_" suffix like "%-sa"]
• //N[@lemma like "%t_" suffix like "%-ta"]
• //N[@lemma like "%z_" suffix like "%-za"]

V-locative defined as:
• //V[@prefix like "%-ni-"]

N-terminative defined as:
• //N[@suffix like "%-ce3"]

V-terminative defined as:
• //V[@prefix like "%-ci-"]

N-ablative defined as:
• //N[@suffix like "%-ta"]
• //N[@suffix like "%-da"]

V-ablative defined as:
• //V[@prefix like "%-ta-"]

N-locative-terminative defined as:
• //N[@suffix like "%-e"]

V-locative-terminative defined as:3

• //V[@prefix like "%bi2-"]

2 Like the genitive case, the locative /-a/ suffix oen assimilates with a stem-final vowel. This
necessitates a rather cumbersome set of queries, since there is no easy way to express this with the
current state of LPath.
3 The canonical form of the locative-terminative is /e/, but it typically assimilates with a preced-
ing prefix, making its orthographic manifestation rather erratic. The tentative queries here are
based on Michalowski (2004).

Using LPath Queries to Annotate Corpora: … 133

• //V[@prefix like "%im-ma-"]
• //V[@prefix like "%mu-ni-"]
• //V[@prefix like "%-ri-"]
• //V[@prefix like "%-ni-"]
• //V[@prefix like "%-di-"]
• //V[@prefix like "%-de3-"]
• //V[@prefix like "%-de4-"]

References

Bird et al. (2000): Steven Bird, Peter Buneman, and Wang-Chiew Tan. 2000. Towards
a query language for annotation graphs. In: Second International Conference on Language
Resources and Evaluation, pp. 807-8⒕

Bird et al. (2001-2007): Steven Bird, Ewan Klein, and Edward Loper. 2001-200⒎ Natural
Language Processing in Python. Philadelphia: University of Pennsylvania.

Bird et~al. (2005): Steven Bird, Yi~Chen, Susan Davidson, Haejoong Lee, and Yifeng
Zheng. 200⒌ Extending XPath to support linguistic queries. In: Proceedings of Pro-
gramming Language Technologies for XML (PLANX), Long Beach, January. ACM, pp.
35-4⒍

Bird et~al. (2006): Steven Bird, Yi~Chen, Susan Davidson, Haejoong Lee, and Yifeng
Zheng. 200⒍ Designing and evaluating an XPath dialect for linguistic queries. In: 22nd
International Conference on Data Engineering (ICDE), Atlanta, April, pp. 52-6⒈

Black et~al. (1998-2006): J.A. Black, G.~Cunningham, J.~Ebeling, E.~Flückiger-Hawker,
E.~Robson, J.~Taylor, and G.~Zólyomi. 1998-200⒍ The Electronic Text Corpus of
Sumerian Literature. http://www-etcsl.orient.ox.ac.uk/ (⒙⒈2008).

Clark and DeRose (1999): James Clark and Steve DeRose. 199⒐ XML Path language
(XPath). http://www.w3.org/TR/xpath (⒙⒈2008).

Englund and Damerow (2000-2005): R.~K. Englund and Peter Damerow. 2000-200⒌
Cuneiform Digital Library Initiative. http://cdli.ucla.edu/ (⒏⒈2008).

Gragg, Gene~B‥ 197⒊ Sumerian dimensional infixes. Kevelaer: Butzon und Bercker.

Grillot-Susini et~al. (1993): F.~Grillot-Susini, C.~Herrenschmidt, and F.~Malbran-
Labat. 199⒊ La version élamite de la trilingue de Behistun: une nouvelle lecture. Journal
Asiatique 281: 19-5⒐

Hinz, Walther and Heidemarie Koch. 198⒎ Elamisches Wörterbuch. Berlin: D. Reimer.

König, Friedrich~Wilhelm. 196⒌ Die elamischen Königsinschriften. Beihe (Archiv &ür
Orientforschung); ⒗ Graz: Im Selbstverlage des Herausgebers [E. Weidner].

Lai and Bird (2006): Catherine Lai and Steven Bird. 200⒍ LPath+: A first-order complete
language for linguistic tree query. Unpublished manuscript.

134 Eric J. M. Smith

Lambert, Maurice. 197⒋ Deux textes élamites du IIIe millénaire. Revue Assyriologique
68: pp. 3-⒕

Michalowski, Piotr. 200⒋ Sumerian. In: Roger~D. Woodard (ed.). The Cambridge
Encyclopedia of the World’s Ancient Languages. Cambridge: Cambridge University
Press.

Molina, Manuel. 2002-. Base de Datos de Textos Neosumerios. http://bdts.
filol.csic.es (⒏⒈2008).

Paper, Herbert~H‥ 195⒋ Note préliminaire sur la date des trois tablettes élamites de
Suse. In: Mémoires de la Délégation en Perse, volume 36, Paris, pp. 79-8⒉

Scheil, V. 190⒎ Textes élamite-anzanites, troisième série, volume 9 of Mémoires de la
Délégation en Perse.

Scheil, V. 19⒒ Textes élamite-anzanites, quatrième série, volume 11 of Mémoires de la
Délégation en Perse.

Scheil, V. 19⒘ Déchiffrement d’un document anzanite relatif aux présages. Revue
d’Assyriologie 14: 29-5⒐

Smith, Eric J.~M. 200⒋ Optimality Theory and Orthography: Using OT to Reconstruct
Elamite Phonology. M.A. forum paper, University of Toronto.

Smith, Eric J.~M. 200⒍ A Unified Account of Elamite Class-markers. Generals paper,
University of Toronto.

Smith, Eric J.~M. 200⒎ Phonological reconstruction of a dead language using the
Gradual Learning Algorithm. In: Proceedings of the Ninth Meeting of the ACL Special
Interest Group in Computational Morphology and Phonology, 28 June 2007, pp. 57-6⒋

Thomsen, Marie~Louise. 198⒋ The Sumerian language: an introduction to its history and
grammatical structure. Copenhagen: Akademisk Forlag (Mesopotamia: Copenhagen
studies in Assyriology; v. 10).

Tinney and Karahashi (2003-2004): Steve Tinney and Fumie Karahashi. 2003-200⒋
Pennsylvania Parsed Corpus of Sumerian. http://psd.museum.upenn.edu/
ppcs/ (⒏⒈2008).

Vallat, François. 199⒍ La lettre élamite de l’Armenie. Zeitschrift �ür Assyriologie 87:
258-26⒐

Veldhuis, Niek. 200⒊ Digital Corpus of Cuneiform Lexical Texts. http://
cuneiform.ucla.edu/dcclt (⒏⒈2008).

